简化隔离式软件可配置I/O通道设计的高集成度、系统级方法

本文作者:Valerie Hamilton       点击: 2022-12-28 11:07
前言:
作者:ADI应用工程师Valerie Hamilton
为过程控制、工厂自动化、楼宇控制系统等工业应用设计系统级隔离式I/O解决方案时,有许多方面需要考虑,其中包括功耗、数据隔离和外形尺寸。图1显示了系统解决方案,其在隔离式单通道软件可配置I/O解决方案中使用AD74115H和ADP1034,解决了电源、隔离和面积挑战。通过将ADP1034的电源和数据隔离功能与AD74115H的软件可配置能力相结合,可以仅使用两个IC和非常少的外部电路来设计一个隔离式单通道I/O系统。 
图1.ADP1034和AD74115H电路图

系统级解决方案
ADP1034是一款高性能隔离式电源管理单元,包含一个隔离反激式稳压器、一个反相降压升压调节器和一个降压调节器,提供三个隔离式电源轨并集成了七个低功耗数字隔离器。ADP1034还具有可编程功率控制(PPC)功能,可通过单线接口按需调整VOUT1上的电压。VOUT1为AD74115H AVDD电源轨提供6V至28V的电压。VOUT2为AD74115H电源轨AVCC和DVCC提供5V电压。如需要,它还能为外部基准电压源提供电源电压。VOUT3为AD74115H AVSS电源轨提供-5V至-24V的电压。

功耗和优化
设计通道间隔离模块时,主要的权衡通常是在功耗和通道密度之间。随着模块尺寸缩小,通道密度增加,每个通道的功耗必须降低,以满足模块的最大功耗预算要求。在这种情况下,模块是指ADP1034和AD74115H,当它们共同使用时,可提供隔离电源、数据隔离和软件可配置I/O功能。

AD74115H和ADP1034之所以成为出色的低功耗解决方案,原因在于集成PPC功能的引入。PPC使用户能够按照需求调整VOUT1电压(AD74115H AVDD电源电压)。这种方法可以大大降低模块在低负载条件下的功耗,特别是在电流输出模式下。

使用PPC功能时,系统中的主机控制器通过SPI向AD74115H发送所需的电压代码,该代码随后通过单线串行接口(OWSI)传递至ADP1034。OWSI实现了CRC校验功能,非常稳健,可抵抗恶劣工业环境中可能存在的EMC干扰。

查看功耗计算示例可知,如果AVDD = 24V且负载为250Ω,则对于20mA的电流输出,模块总功耗为748mW。当使用PPC将AVDD电压降至8.6V(负载电压+裕量)时,模块功耗约为348mW。这表明模块内节省了400mW的功耗。

功耗计算示例
示例1和示例2选择了电流输出用例,驱动20mA输出。负载为250Ω,使能ADC,以每秒20个样本转换默认测量配置。

示例1(无PPC):
AD74115H输出功率 = (AVDD = 24V) × 20mA = 480mW
AD74115H输入功率 = AD74115HQUIESCENT (206mW) + ADC功耗(30mW) + 480mW = 716mW
模块输入功率 = 716mW + ADP1034功耗(132mW) = 848mW
负载功耗 = 20mA2 × 250Ω = 100mW
模块总功耗 =(模块输入功率 - 负载功耗)= 748mW

在示例2中可以看到,当使能PPC功能以将AVDD降低到所需电压(20mA × 250Ω) + 3.6V裕量 = 8.6V时,模块的功耗降至348mW。

示例2(使能PPC):
AD74115H输出功率 = (AVDD = 8.6V) × 20mA = 172mW
AD74115H输入功率 = AD74115HQUIESCENT (136mW) + ADC功耗(30mW) + 172mW = 338mW
模块输入功率 = 338mW + ADP1034功耗(100mW) = 448mW
负载功耗 = 20mA2 × 250Ω = 100mW
模块总功耗 =(模块输入功率 - 负载功耗)= 348mW

图2显示了AD74115H应用板上在25°C时的实测功耗。测量结果表明,功耗略低于计算的功耗。此结果会因器件而略有不同。
 
图2.测量数据:驱动20mA到250Ω负载,AVDD = 24V,AVDD = 8.6V(使用PPC)

图3显示了使用PPC的模块(ADP1034和AD74115)功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。两个不同的电压被施加于ADP1034的VINP(15V和24V),以显示ADP1034的效率。测量是在25°C下进行。
 
图3.20mA输出时功耗与RLOAD的关系

图4显示了不同温度下使用PPC的功耗(针对每个负载电阻值设置优化的AVDD)与不同负载电阻值的关系。
 
图4.功耗与温度的关系

表1.使用PPC的AD74115H典型用例功耗

VINP

(V)

AVDD

电压

(V)

 

用例

 

负载

 

功耗(mW)

24

8.6

电流输出

250

322

24

18

电压输入

N/A

250

24

18

电流输入外部供电

24mA

HART使能

HART禁用

422

334

24

18

电流输入环路通过HART®供电

24mA

456

24

16.5

电压输出双极性12V范围

1k

ZS

FS

345

333

24

18

2线RTD

250

260

24

18

3线RTD

250

295

24

18

4线RTD

250

268

24

18

数字输入逻辑

2.4mA灌电流

297

24

18

数字输入环路供电

250

667

24

12

数字输出内部

12V继电器~278Ω线圈电阻

拉电流

灌电流

265

295

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

数字输出用例
在工业应用中,数字输出被认为是最耗电的使用场景。AD74115H支持内部和外部拉电流与灌电流数字输出。ADP1034可为内部数字输出功能提供足够的功率,支持最高100mA的连续拉电流或灌电流。在这种情况下,数字输出电路电源DO_VDD直接连接到AVDD。对于100mA以上的电流,必须使用外部数字输出功能,这需要将额外的电源连接到DO_VDD

内部数字输出用例超时
为了支持在初始上电时对容性负载充电,可以在使用内部数字输出用例的同时,使能更高的短路限流值(~280mA),使能的时间T1可编程。经过T1时间后,部署第二短路限流值(~140mA)。这是一个较低的限流值,在可编程的持续时间T2内有效。在这些短路情况下,系统需要更多电流,因此必须注意确保ADP1034 VOUT1电压不会骤降。为确保无骤降,如果需要24V DO_VDD,建议将24V电压作为ADP1034的系统电源电压。这是24V继电器的典型电压需求。对于12V继电器,建议使用至少18V的系统电源电压(ADP1034 VINP),以确保可以为负载提供足够的电流。

图5和图6显示了DO_VDD与T1和T2短路限值的关系,证明了使用ADP1034提供大电流的稳定性。
 
 
图5.系统电源 = 24V,DO_VDD电压 = 24V
 
图6.系统电源 = 24V,DO_VDD电压 = 12V

数据隔离和解决方案尺寸
ADP1034采用ADI的iCoupler®专利技术,在7mm × 9mm封装中集成了三个隔离电源轨,包括SPI数据和三个GPIO隔离通道。这种高集成度将所有通道隔离要求整合到PCB上的一个小区域中,有助于解决PCB面积挑战,而且实现了省电。当通道不使用时,ADP1034的控制器端将其他SPI隔离器通道置于低功耗状态。这意味着通道仅在需要时才处于活动状态。三个隔离GPIO通道用于隔离AD74115H的¯("RESET" )、¯("ALERT" )和¯("ADC_RDY" )引脚,从而满足AD74115H的所有隔离要求,而无需增加额外的隔离器IC成本。

结语
设计一种低功耗、小尺寸的通道间隔离I/O解决方案,哪怕是对于业内一些经验十分丰富的设计人员而言,也可能是一项挑战。ADP1034和AD74115H系统级解决方案通过高集成度和系统级设计方法有效化解了此挑战。由单个IC从单个系统电源提供三个隔离电源轨,并提供集成数据隔离,这使得BOM成本大幅降低。再加上AD74115H的灵活性,该系统设计将能满足大多数I/O工业应用的要求。
 
关于ADI公司
Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。更多信息,请访问www.analog.com/cn

关于作者
Valerie Hamilton目前在ADI爱尔兰公司担任产品应用工程师。她于2014年7月毕业于高威梅雅理工学院,获工程学学士学位,随即加入ADI公司。Valerie主要关注工业I/O产品,包括软件可配置I/O和数模转换器。